19 research outputs found

    Multiple and diversified transposon lineages contribute to early and recent bivalve genome evolution

    Get PDF
    Background Transposable elements (TEs) can represent one of the major sources of genomic variation across eukaryotes, providing novel raw materials for species diversification and innovation. While considerable effort has been made to study their evolutionary dynamics across multiple animal clades, molluscs represent a substantially understudied phylum. Here, we take advantage of the recent increase in mollusc genomic resources and adopt an automated TE annotation pipeline combined with a phylogenetic tree-based classification, as well as extensive manual curation efforts, to characterize TE repertories across 27 bivalve genomes with a particular emphasis on DDE/D class II elements, long interspersed nuclear elements (LINEs), and their evolutionary dynamics.Results We found class I elements as highly dominant in bivalve genomes, with LINE elements, despite less represented in terms of copy number per genome, being the most common retroposon group covering up to 10% of their genome. We mined 86,488 reverse transcriptases (RVT) containing LINE coming from 12 clades distributed across all known superfamilies and 14,275 class II DDE/D-containing transposons coming from 16 distinct superfamilies. We uncovered a previously underestimated rich and diverse bivalve ancestral transposon complement that could be traced back to their most recent common ancestor that lived similar to 500 Mya. Moreover, we identified multiple instances of lineage-specific emergence and loss of different LINEs and DDE/D lineages with the interesting cases of CR1- Zenon, Proto2, RTE-X, and Academ elements that underwent a bivalve-specific amplification likely associated with their diversification. Finally, we found that this LINE diversity is maintained in extant species by an equally diverse set of long-living and potentially active elements, as suggested by their evolutionary history and transcription profiles in both male and female gonads.Conclusions We found that bivalves host an exceptional diversity of transposons compared to other molluscs. Their LINE complement could mainly follow a "stealth drivers" model of evolution where multiple and diversified families are able to survive and co-exist for a long period of time in the host genome, potentially shaping both recent and early phases of bivalve genome evolution and diversification. Overall, we provide not only the first comparative study of TE evolutionary dynamics in a large but understudied phylum such as Mollusca, but also a reference library for ORF-containing class II DDE/D and LINE elements, which represents an important genomic resource for their identification and characterization in novel genomes

    Comparative genomics of Hox and ParaHox genes among major lineages of Branchiopoda with emphasis on tadpole shrimps

    Get PDF
    Hox and ParaHox genes (HPHGs) are key developmental genes that pattern regional identity along the anterior–posterior body axis of most animals. Here, we identified HPHGs in tadpole shrimps (Pancrustacea, Branchiopoda, Notostraca), an iconic example of the so-called “living fossils” and performed a comparative genomics analysis of HPHGs and the Hox cluster among major branchiopod lineages. Notostraca possess the entire Hox complement, and the Hox cluster seems to be split into two different subclusters, although we were not able to support this finding with chromosome-level assemblies. However, the genomic structure of Hox genes in Notostraca appears more derived than that of Daphnia spp., which instead retains the plesiomorphic condition of a single compact cluster. Spinicaudata and Artemia franciscana show instead a Hox cluster subdivided across two or more genomic scaffolds with some orthologs either duplicated or missing. Yet, branchiopod HPHGs are similar among the various clades in terms of both intron length and number, as well as in their pattern of molecular evolution. Sequence substitution rates are in fact generally similar for most of the branchiopod Hox genes and the few differences we found cannot be traced back to natural selection, as they are not associated with any signals of diversifying selection or substantial switches in selective modes. Altogether, these findings do not support a significant stasis in the Notostraca Hox cluster and further confirm how morphological evolution is not tightly associated with genome dynamics

    Comparative genomics of tadpole shrimps (Crustacea, Branchiopoda, Notostraca): Dynamic genome evolution against the backdrop of morphological stasis

    Get PDF
    This analysis presents five genome assemblies of four Notostraca taxa. Notostraca origin dates to the Permian/Upper Devonian and the extant forms show a striking morphological similarity to fossil taxa. The comparison of sequenced genomes with other Branchiopoda genomes shows that, despite the morphological stasis, Notostraca share a dynamic genome evolution with high turnover for gene families' expansion/contraction and a transposable elements content comparable to other branchiopods. While Notostraca substitutions rate appears similar or lower in comparison to other branchiopods, a subset of genes shows a faster evolutionary pace, highlighting the difficulty of generalizing about genomic stasis versus dynamism. Moreover, we found that the variation of Triops cancriformis transposable elements content appeared linked to reproductive strategies, in line with theoretical expectations. Overall, besides providing new genomic resources for the study of these organisms, which appear relevant for their ecology and evolution, we also confirmed the decoupling of morphological and molecular evolution

    Laparoendoscopically assisted endoscopic small bowel polypectomy in a patient with Peutz-Jeghers syndrome

    No full text
    Peutz-Jeghers syndrome is a rare condition, requiring regular endoscopic or radiological diagnostic studies. Polyps are a potential source of dysplasia and malignancy. We present a case in which we used a new diagnostic and therapeutic approach to this pathology by performing a laparoscopically assisted endoscopic polypectomy. This approach is minimally invasive and can be repeated if necessary. It might also be adopted for diagnosis and treatment of other intestinal pathologies, such as vascular malformations in the small bowel

    Macroevolutionary Analyses Provide New Evidence of Phasmid Wings Evolution as a Reversible Process

    No full text
    The concept that complex ancestral traits can never be recovered after their loss is still widely accepted, despite phylogenetic and molecular approaches suggest instances where phenotypes may have been lost throughout the evolutionary history of a clade and subsequently reverted back in derived lineages. One of the first and most notable examples of such a process is wing evolution in phasmids; this polyneopteran order of insects, which comprises stick and leaf insects, has played a central role in initiating a long-standing debate on the topic. In this study, a novel and comprehensive time tree including over 300 Phasmatodea species is used as a framework for investigating wing evolutionary patterns in the clade. Despite accounting for several possible biases and sources of uncertainty, macroevolutionary analyses consistently revealed multiple reversals to winged states taking place after their loss, and reversibility is coupled with higher species diversification rates. Our findings support a loss of or reduction in wings that occurred in the lineage leading to the extant phasmid most recent common ancestor, and brachyptery is inferred to be an unstable state unless co-opted for nonaerodynamic adaptations. We also explored how different assumptions of wing reversals probability could impact their inference: we found that until reversals are assumed to be over 30 times more unlikely than losses, they are consistently inferred despite uncertainty in tree and model parameters. Our findings demonstrate that wing evolution is a reversible and dynamic process in phasmids and contribute to our understanding of complex trait evolution. [Dollo's law; Phasmatodea; phylogenetic comparative methods; polyneoptera; reversals; wing.]

    Taxonomic revision of the Australian stick insect genus Candovia (Phasmida: Necrosciinae): insight from molecular systematics and species-delimitation approaches

    No full text
    The Phasmida genus Candovia comprises nine traditionally recognized species, all endemic to Australia. In this study, Candovia diversity is explored through molecular species-delimitation analyses using the COIFol gene fragment and phylogenetic inferences leveraging seven additional mitochondrial and nuclear loci. Molecular results were integrated with morphological observations, leading us to confirm the already described species and to the delineation of several new taxa and of the new genus Paracandovia. New Candovia species from various parts of Queensland and New South Wales are described and illustrated (C. alata sp. nov., C. byfieldensis sp. nov., C. dalgleishae sp. nov., C. eungellensis sp. nov., C. karasi sp. nov., C. koensi sp. nov. andC. wollumbinensis sp. nov.). New combinations are proposed and species removed from synonymy with the erection of the new genus Paracandovia (P. cercata stat. rev., comb. nov., P. longipes stat. rev., comb. nov., P. pallida comb. nov., P. peridromes comb. nov., P. tenera stat. rev., comb. nov.). Phylogenetic analyses suggest that the egg capitulum may have independently evolved multiple times throughout the evolutionary history of these insects. Furthermore, two newly described species represent the first taxa with fully developed wings in this previously considered apterous clade
    corecore